Relaxing the IIA Assumption in Locational Choice Models: A Comparison Between Conditional Logit, Mixed Logit, and Multinomial Probit Models∗
نویسندگان
چکیده
This paper estimates a locational choice model to assess the demand for local public services, using a data set where individuals chooses between 26 municipalities within a local labor market. We assess the importance of the IIA assumption by comparing the predictions of three difference models; the conditional logit (CL) model, the mixed logit (MXL) model, and the multinomial probit (MNP) model. Our main finding is that a MXL or a MNP estimator leads to exactly the same conclusions as the traditional CL estimator. That is, given the data used here, the IIA assumption, and hence the use of a CL estimator, seems to be valid when estimating Tiebout-related migration. The only instance when we get somewhat different results when using the MXL or MNP estimator compared with the CL estimator is when we have a too parsimonious model. One possible hypothesis explaining this result is that omitted variables are captured by the distribution parameters of the coefficients of the included variables, leading to the false conclusion that the coefficients are not fixed. This hypothesis is supported by the results from a Monte Carlo investigation. JEL Classification: C15, C25, H72, H73
منابع مشابه
Probit and nested logit models based on fuzzy measure
Inspired by the interactive discrete choice logit models [Aggarwal, 2019], this paper presents the advanced families of discrete choice models, such as nested logit, mixed logit, and probit models to consider the interaction among the attributes. Besides the DM's attitudinal character is also taken into consideration in the computation of choice probabilities. The proposed choice models make us...
متن کاملDivision of the Humanities and Social Sciences California Institute of Technology Pasadena, California 91125 When Politics and Models Collide: Estimating Models of Multi-party Elections
Theory: The spatial model of elections can better be represented by using conditional logit than by multinomial logit. The spatial model, and random utility models in general, suffer from a failure to adequately consider the sub stitutability of candidates sharing similar or identical issue positions. Hypotheses: Multinomial logit is not much better than successive applications of binomial log...
متن کاملWorking Paper Series Categorical Data Categorical Data
Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...
متن کاملComparison of Vehicle-Ownership Models
Empirical studies on household car ownership have used two types of discrete choice modelling structures, the ordered and the unordered. In ordered structures such as the ordered logit and ordered probit models, the choice of the number of household-vehicles arises from a uni-dimensional latent index that reflects the propensity of a household to own vehicles. Unordered response models, on the ...
متن کاملConditional Logit, IIA, and Alternatives for Estimating Models of Interstate Migration
Many researchers have used the conditional logit model to examine migration. One common objection to this model is that it carries the independence from irrelevant alternatives (IIA) assumption, which may be too restrictive. This study compares the conditional logit with models that partially relax (nested logit) or fully relax (mixed logit) the IIA assumption. We will begin to learn whether as...
متن کامل